Predicting PDZ domain–peptide interactions from primary sequences
نویسندگان
چکیده
منابع مشابه
Predicting protein-protein interactions from primary structure
MOTIVATION An ambitious goal of proteomics is to elucidate the structure, interactions and functions of all proteins within cells and organisms. The expectation is that this will provide a fuller appreciation of cellular processes and networks at the protein level, ultimately leading to a better understanding of disease mechanisms and suggesting new means for intervention. This paper addresses ...
متن کاملPredicting Protein-Protein Interactions from Protein Sequences Using Phylogenetic Profiles
In this study, a high accuracy protein-protein interaction prediction method is developed. The importance of the proposed method is that it only uses sequence information of proteins while predicting interaction. The method extracts phylogenetic profiles of proteins by using their sequence information. Combining the phylogenetic profiles of two proteins by checking existence of homologs in diff...
متن کاملPredicting protein-protein interactions based only on sequences information.
Protein-protein interactions (PPIs) are central to most biological processes. Although efforts have been devoted to the development of methodology for predicting PPIs and protein interaction networks, the application of most existing methods is limited because they need information about protein homology or the interaction marks of the protein partners. In the present work, we propose a method ...
متن کاملPredicting People's 3D Poses from Short Sequences
We propose an efficient approach to exploiting motion information from consecutive frames of a video sequence to recover the 3D pose of people. Instead of computing candidate poses in individual frames and then linking them, as is often done, we regress directly from a spatio-temporal block of frames to a 3D pose in the central one. We will demonstrate that this approach allows us to effectivel...
متن کاملPredicting with Variables Constructed from Temporal Sequences
In this study, we applied the local learning paradigm and conditional independence assumptions to control the rapid growth of the dimensionality introduced by multivariate time series. We also combined various univariate time series with different stationary assumptions in temporal models. These techniques are applied to learn simple Bayesian networks from temporal data and to predict survival ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Biotechnology
سال: 2008
ISSN: 1087-0156,1546-1696
DOI: 10.1038/nbt.1489